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1. INTRODUCTION

In structural dynamics, schemes such as the assumed-modes method [1] or the Lagrange
multipliers formalism [2, 3] are often used to obtain the approximate modes of vibration of
complex dynamical systems consisting of a continuous structure combined with various
spring}mass attachments. The assumed-modes method [1] is a procedure for discretizing
an arbitrary structure prior to obtaining the governing equations of motion. This method
consists of assuming a solution of the free vibration problem in the form of a series
composed of a linear combination of N spatial functions multiplied by the time-varying
generalized co-ordinates. The spatial functions must satisfy the boundary conditions of the
unconstrained system, de"ned here as the arbitrary structure without the constraints. This
series is then substituted into the expressions for the kinetic and potential energies, thus
reducing them to discrete form, and the equations of motion are derived by means of
Lagrange's equations. Assuming R spring}mass systems are attached to the unconstrained
system at distinct locations, then the mass and sti!ness matrices of the combined system can
be expressed as the sum of diagonal matrices and R rank-one matrices. The modes of
vibration of the combined system correspond to the eigensolutions of an N]N generalized
eigenvalue problem.

In reference [4], an approach to reduce the aforementioned generalized eigenvalue
problem was presented. Speci"cally, for a system with R spring}mass attachments at
distinct locations, the N]N generalized eigenvalue problem was manipulated so that its
characteristic determinant is equivalent to that of a smaller R]R matrix (where it was
assumed R@N, since in practice, a large number of component modes, N, is generally used
to ensure convergence and su$cient accuracy), each element of which involves a sum of
N terms.

Interestingly, this reduced characteristic determinant can also be obtained by using the
Lagrange multipliers formalism [2, 3]. This method is based on using the spatial functions
of the unconstrained structure in a Rayleigh}Ritz analysis with the constraint conditions
enforced by means of Lagrange multipliers. Using this particular approach, R Lagrange
multipliers and R constraint variables are introduced in the analysis. Manipulating the
equations of motion, the eigenvalues must satisfy the zeros of the constraint equations in
matrix form. Under certain conditions, the R]R characteristic determinant that needs to
be solved is shown to be identical to that obtained by mathematically manipulating the
N]N generalized eigenvalue problem as obtained from the assumed-modes method [4].
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Using the Lagrange multipliers formalism, Dowell [2] outlined the means to determine
the eigenvectors of combined dynamical systems. However, he did not derive any
expressions nor give any examples. In this technical note, the unconstrained modes of
vibration will be used to extract the constrained modes of vibration of a continuous elastica
to which spring}mass systems are attached. In real systems, having the attachment
locations coincide exactly with the nodes of the unconstrained system is nearly impossible
to achieve. Thus for simplicity, it will be assumed in this technical note that the attachment
locations are distinct from the nodes of the unconstrained structure. Once the eigenvalues of
the combined system are found by solving for the roots of a reduced characteristic
determinant, a closed-form expression, derived from the general Lagrange multipliers
formalism, will be provided that can be used to calculate the eigenvectors of the combined
system.

2. THEORY

Consider the free vibration of the simple combined system of Figure 1, which consists of
a uniform continuous system to which a grounded spring}mass system is attached at x

1
.

The modes of vibration of the system correspond to the eigensolutions of the generalized
eigenvalue problem

[K]g6 "u2[M]g6 , (1)

where u is the natural frequency of the combined system, and g6 represents its corresponding
eigenvector. The N]N sti!ness and mass matrices, [K] and [M], are given by

[K]"[K]#k/
1
/T
1
, [M]"[I]#m/

1
/T
1
, (2, 3)

where [I] denotes the identity matrix, [K] is a diagonal matrix whose ith element is given by
j
i
, the square of the ith natural frequency of the unconstrained system, and /

1
is a vector of

the normalized eigenfunctions (such that the generalized masses are identically one) of the
unconstrained system evaluated at x

1
:

/
1
"[/

1
(x

1
) ,2, /

i
(x

1
) ,2, /

N
(x

1
)]T . (4)

Note that both [K] and [M] consist of a diagonal matrix modi"ed by a rank-one matrix.
For a non-trivial g6 , the eigenvalues, u2, must satisfy

det ([K]!u2[M])"det ([K]#p/
1
/T
1
!u2[I])"0, (5)
Figure 1. Combined dynamical system consisting of a continuous structure with a spring}mass system.
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where p"k!mu2. Rearranging equation (5), it can be reduced to the following simple
frequency equation (see Appendix A of reference [4] for detailed derivation):

det ([K]#p/
1
/T
1
!u2[I])"det ([K]!u2[I]) det ([I]#p ([K]!u2[I])~1/

1
/T

1
)

"

N
<
i/1

(j
i
!u2) A1#p

N
+
i/1

/2
i
(x

1
)

j
i
!u2B"0, (6)

where /
i
(x

1
) is the ith element of /

1
at x

1
. The eigenvalues of equation (1) also correspond

to the zeros of equation (6), which can be determined either graphically or numerically by
using any standard root solvers routine. Once the natural frequencies are found, the
corresponding eigenvectors, the g6 's, can be computed via Gaussian elimination by solving
equation (1).

Alternatively, the method of Lagrange multipliers [2, 3] can also be used to analyze the
free vibration problem of Figure 1. Using this particular approach (see reference [2] for
detailed derivation), the equations of motion are given by

gK
i
#j

i
g
i
!k/

i
(x

1
)"0, i"1,2 , N, (7)

kz#mzK#k"0, (8)

where k represents the Lagrange multiplier, and z is the spring}mass de#ection. Assuming
harmonic motion,

g
i
(t)"gN

i
e+ut, k(t)"kN e+ut, z(t)"zN e+ut (9)

and equations (7) and (8) become

(j
i
!u2 )g6

i
!k6 /

i
(x

1
)"0, i"1,2, N, (10)

(k!u2m)zN#kN "0. (11)

Solving for g6
i
and zN from equations (10) and (11), and substituting the resultant equations

into the constraint equation

N
+
i/1

/
i
(x

1
)gN

i
!zN"0. (12)

the following secular equation is obtained:

1#(k!mu2 )
N
+
i/1

/2
i
(x

1
)

j
i
!u2

"0. (13)

Comparing equations (6) and (13), note the absence of the product terms. When the
constraint location is not located at the node of any of the component modes, the
eigenvalues of the constrained and unconstrained systems must be distinct; thus u2Oj

i
,

and equation (6) reduces to equation (13).
While laborious to apply, the method of Lagrange multipliers does conveniently lead to

closed-form expressions for the eigenvectors of the system, which reveal the modal
participation of the unconstrained modes. The elements of the eigenvector of equation (1)



Figure 2. Combined dynamical system consisting of a continuous structure with R spring}mass systems.
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are given by the g6
i
's. Thus, from equation (10), the ith element of the jth eigenvector of

a continuous structure to which a spring}mass system is attached is

g6 j
i
"

/
i
(x

1
)

j
i
!u2

j

, (14)

where the elements of the eigenvectors have been normalized by dividing them by k6 .
The previous formalism is now extended to the more general case of a continuous

structure to which R spring}mass systems are attached at distinct locations as shown in
Figure 2. The modes of vibration of Figure 2 correspond to the eigensolutions of the
generalized eigenvalue problem (1), where the sti!ness and mass matrices are now given by
(see, reference [4] for detailed derivation)

[K]"[K]#
R
+
i/1

k
i
/
i
/T

i
, [M]"[I]#

R
+
i/1

m
i
/
i
/T
i

(15, 16)

and

/
i
"[/

1
(x

i
) ,2, /

j
(x

i
) ,2 , /

N
(x

i
)]T. (17)

Note that both [K] and [M] consist of a diagonal matrix modi"ed by R rank one matrices.
The natural frequencies of the combined system must satisfy the N]N characteristic
determinant

det ([K]!u2[M])"detA[K]#
R
+
i/1

k
i
/
i
/T
i
!u2

R
+
i/1

m
i
/
i
/T
i
!u2[I]B

"det A[K]#
R
+
i/1

p
i
/
i
/T
i
!u2[I]B"0, (18)

where p
i
"k

i
!m

i
u2. Equation (18) can be expressed alternatively as the product of the

following characteristic determinants:

detA[K]#
R
+
i/1

p
i
/
i
/T
i
!u2[I]B"det ([K]!u2[I]) det A[I]#

R
+
i/1

p
i
([K]!u2[I])~1/

i
/T
i B

"

N
<
i/1

(j
i
!u2) det [B]"0, (19)
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where the (i, j)th element of [B], of size R]R, is given by

b
ij
"

N
+
r/1

/
r
(x

i
)/

r
(x

j
)

j
r
!u2

#

1

p
i

dj
i
, i, j"1,2, R. (20)

Note that each element of [B] consists of a sum of N terms. In equation (20), /
r
(x

i
) denotes

the rth eigenfunction at x
i
and dj

i
is the Kronecker delta. Once the natural frequencies, u's,

are found by solving for the roots of equation (19), the corresponding eigenvectors, g6 's can
be computed by solving equation (1) using Gaussian elimination, where the sti!ness and
mass matrices are now given by equations (15) and (16) respectively.

Like before, the method of Lagrange multipliers [2, 3] can also be used to analyze the free
vibration problem of Figure 2. Applying Lagrange's equation yields

gK
i
#j

i
g
i
!

R
+
r/1

k
r
/

i
(x

r
)"0, i"1,2, N, (21)

k
j
z
j
#m

j
zK
j
#k

j
"0, j"1,2 , R, (22)

where k
j
represents the jth Lagrange multiplier, and z

j
is the spring}mass de#ection at x

j
.

Assuming harmonic motion, equations (21) and (22) reduce to

(j
i
!u2)g6

i
!

R
+
r/1

k6
r
/
i
(x

r
)"0, i"1,2, N, (23)

k
j
zN
j
!u2m

j
zN
j
#kN

j
"0, j"1,2, R. (24)

Solving for the g6
i
's and zN

i
's in terms of the Lagrange multipliers in equations (23) and (24),

and substituting the resultant equations into the constraint equations

N
+
r/1

/
r
(x

i
)gN

r
!zN

i
"0, i"1,2, R, (25)

R constraint equations are obtained that can be expressed in matrix form as

[B]l6 "0, (26)

where l6 "[k6
1
,2 , kN

R
]T, and [B] is an order R]R matrix whose elements are given by

equation (20). For non-trivial solution, the natural frequencies are given by the roots of the
characteristic determinant

det[B]"0. (27)

Comparing equations (27) and (19), note the absence of the product terms. When the
constraint locations do not coincide with the nodes of the component modes, u2Oj

i
, and

equation (19) reduces to equation (27).
The eigenvectors of a continuous structure to which R spring}mass systems are attached

can be readily obtained by using the Lagrange multipliers formalism. Using equation (23),
the ith element of the jth eigenvector is

g6 j
i
"

1

j
i
!u2

j

R
+
r/1

k6
r
/

i
(x

r
), (28)
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where the Lagrange multipliers for the jth eigenvector, the k6
r
's, can be obtained by solving

equation (26) using Gaussian elimination, for u"u
j
. For R"1, equation (14) is recovered

if the eigenvectors are normalized by k6
1
.

3. DISCUSSION AND RESULTS

The Lagrange multipliers formalism leads immediately to the much smaller characteristic
determinant of order R]R. This particular approach, however, requires R constraint
variables, z

i
1s, and R Lagrange multipliers, k

i
's, to be introduced. For complicated systems,

the task of obtaining the constraint equations may be lengthy and non-trivial, and this
method loses much of its simplicity. While the Lagrange multipliers formalism is more
tedious to apply, it does conveniently lead to closed-form expressions for the eigenvectors.

Based on the discussion above, an alternative formulation is proposed to analyze the free
vibration of a combined dynamical system as follows.

(1) Use the simple assumed-modes method, in conjunction with Lagrange's equations, to
formulate an N]N generalized eigenvalue problem.

(2) Manipulate the generalized eigenvalue problem to a smaller R]R characteristic
determinant.

(3) Solve for the natural frequencies and evoke equation (28), obtained via the Lagrange
multiplier formalism, to determine the corresponding eigenvectors.

This proposed scheme thus eliminates the need to solve an N]N generalized eigenvalue
problem (which can be very costly), and it does not require one to introduce additional
variables, the z

i
's and k

i
's (which can be complicated). The utility of the proposed approach

in determining the natural frequencies of combined systems was thoroughly investigated in
reference [4], and the results were compared with those given in literature, obtained by
using other methods. In this technical note, the proposed formulation will be used to obtain
the eigenvalues and eigenvectors of a continuous structure to which a single spring}mass
system and R spring}mass systems are attached.

3.1. SINGLE CONSTRAINT

For de"niteness, the free vibration of a uniform "xed}"xed string under constant tension,
¹, with a spring}mass oscillator attached at x

1
as shown in Figure 1 will be analyzed. The

component modes and the natural frequencies squared of the unconstrained system are
given by the normalized eigenfunctions and the eigenvalues of a "xed}"xed spring,
respectively,

/
i
(x)"S

2

o¸
sin

inx

¸

, j
i
"A

inc

¸ B
2
, (29, 30)

where o represents the mass per unit length of the string, ¸ the length of the string, and

c"J¹/o . The natural frequencies of the combined system can be calculated by solving for
the eigenvalues of an N]N generalized problem (see equation (1)), or by solving for the
roots of a secular equation (see equation (6)).

When /
i
(x

1
)O0, for i"1,2 , N (physically, this occurs when the constraint location is

not at any node of the "rst N component modes of the unconstrained system), the
eigenvalues of the constrained system must be distinct from those of the unconstrained



TABLE 1

¹he ,rst six natural frequencies of the system shown in Figure 1, for k"15¹/¸, m"7o¸,
x
1
"0)78¸ and N"15. ¹he natural frequencies are non-dimensionalized by dividing by

J¹/o¸2

Natural frequency Equation (1) Equation (13)

1 1)6874 1)6874
2 4)1189 4)1189
3 8)1479 8)1479
4 12)1858 12)1858
5 14)7591 14)7591
6 16)3215 16)3215

TABLE 2

¹he ,rst three normalized eigenvectors of the system shown in Figure 1, for k"15¹/¸,
m"7o¸, x

1
"0)78¸ and N"15, where gN j

A
"jth eigenvector obtained from solving equation

(1), and gN j
B
"jth eigenvector obtained from solving equation (14)

g6 1
A

g6 1
B

g6 2
A

g6 2
B

g6 3
A

g6 3
B

!1)000E#00 !1)000E#00 !1)000E#00 !1)000E#00 !2)888E!01 !2)888E!01
2)954E!01 2)954E!01 !4)857E!01 !4)857E!01 9)347E!01 9)347E!01

!1)123E!01 !1)123E!01 1)358E!01 1)358E!01 1)000E#00 1)000E#00
2)615E!02 2)615E!02 !2)907E!02 !2)907E!02 !1)030E!01 !1)030E!01
1)396E!02 1)396E!02 !1)497E!02 !1)497E!02 !4)387E!02 !4)387E!02

!2)639E!02 !2)639E!02 2)778E!02 2)778E!02 7)483E!02 7)483E!02
2)273E!02 2)273E!02 !2)367E!02 !2)367E!02 !6)089E!02 !6)089E!02

!1)199E!02 !1)199E!02 1)240E!02 1)240E!02 3)101E!02 3)101E!02
8)684E!04 8)684E!04 !8)933E!04 !8)933E!04 !2)193E!03 !2)193E!03
6)580E!03 6)580E!03 !6)746E!03 !6)746E!03 !1)635E!02 !1)635E!02

!8)956E!03 !8)956E!03 9)159E!03 9)159E!03 2)199E!02 2)199E!02
7)028E!03 7)028E!03 !7)173E!03 !7)173E!03 !1)710E!02 !1)710E!02

!2)817E!03 !2)817E!03 2)871E!03 2)871E!03 6)807E!03 6)807E!03
!1)418E!03 !1)418E!03 1)444E!03 1)444E!03 3)409E!03 3)409E!03

4)019E!03 4)019E!03 !4)087E!03 !4)087E!03 !9)616E!03 !9)616E!03
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system, i.e., u2Oj
i
. Thus, the eigenvalues of the constrained system can be obtained by

solving for the roots of equation (13). Table 1 lists the "rst six natural frequencies of the
system of Figure 1, for k"15¹/¸, m"7o¸, N"15 and x

1
"0)78¸, where the constraint

location does not coincide with the node of any of the "rst 15 modes. Note that equations (1)
and (13) give identical results. The eigenvectors of the system can be obtained either by
solving the generalized eigenvalue problem of equation (1), or by using equation (14), which
leads immediately to closed-form expressions once the natural frequencies are known.
Table 2 shows the "rst three eigenvectors of the system, where the elements of the
eigenvectors are normalized with respect to the magnitude of the largest entry. Note again
the exact agreement between the two schemes.



Figure 3. Uniform cantilever Euler}Bernoulli beam with three lumped attachments.
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3.2. MULTIPLE CONSTRAINTS

Here the free vibration of a uniform cantilever Euler}Bernoulli beam to which two
grounded translational springs and one lumped mass are attached as shown in Figure 3 will
be analyzed. The component modes and the natural frequencies squared of the
unconstrained system correspond to the normalized eigenfunctions and the eigenvalues of
a uniform "xed}free Euler}Bernoulli beam, respectively,

/
i
(x)"

1

Jo¸ Acosb
i
x!coshb

i
x#

sinb
i
¸!sinhb

i
¸

cosb
i
¸#coshb

i
¸

(sinb
i
x!sinhb

i
x)B , (31)

j
i
"(b

i
¸)4, (32)

where o represents the mass per unit length of the beam, ¸ its length, and b
i
¸ satis"es the

following transcendental equation:

cosb
i
¸ coshb

i
¸"!1. (33)

When the constraints are not at the nodes of the component modes, then u2Oj
i
and the

eigenvalues are given by the roots of equation (27). Table 3 lists the "rst six natural
frequencies of the combined beam system of Figure 3, for (k

1
, m

1
)"(12EI/¸3, 0), (k

2
,

m
2
)"(0, 2o¸), (k

3
, m

3
)"(10EI/¸3, 0), x

1
"0)30¸, x

2
"0)60¸, x

3
"0)80¸, and N"15.

The natural frequencies are non-dimensionalized by dividing by JEI/o¸4 . Note that both
equations (1) and (27) give identical results.

The eigenvectors of Figure 3 can be obtained by using either equation (1) or equation (28).
The former requires one to solve an N]N generalized eigenvalue problem, while the latter
leads immediately to closed-form expressions once the natural frequencies are known and
the Lagrange multipliers, k6

r
's, are determined. Theoretically, the k6

r
's can be computed via

Gaussian elimination by solving equation (26). However, because this technique is purely
numerical, the eigenvalues thus obtained are close but not quite equal to the exact
eigenvalues. Thus, matrix [B] of equation (26) is never singular, which leads to trivial
Lagrange multipliers, l6 "0, and trivial eigenvectors, g6 "0. To circumvent this numerical
di$culty, k6

1
is arbitrarily set to 1, since the mode shapes are unique up to an arbitrary

constant. Rearranging equation (26) leads to

[B@]l6 @"f. (34)



TABLE 3

¹he ,rst six natural frequencies of the system shown in Figure 3, for (k
1
, m

1
)"(12EI/¸3, 0),

(k
2
, m

2
)"(0, 2o¸), (k

3
, m

3
)"(10EI/¸3, 0), x

1
"0)30¸, x

2
"0)60¸, x

3
"0)80¸, and N"15.

¹he natural frequencies are non-dimensionalized by dividing by JEI/o¸4

Natural frequency Equation (1) Equation (27)

1 3)4785 3)4785
2 15)7448 15)7448
3 53)8761 53)8761
4 113)0797 113)0797
5 164)8772 164)8772
6 297)2032 297)2032

TABLE 4

¹he ,rst three normalized eigenvectors of the system shown in Figure 3, for (k
1
,

m
1
)"(12EI/¸3, 0), (k

2
, m

2
)"(0, 2o¸), (k

3
, m

3
)"(10EI/¸3, 0), x

1
"0)30¸, x

2
"0)60¸,

x
3
"0)80¸, and N"15, where gN j

A
"jth eigenvector obtained from solving equation (1), and

gN j
B
"jth eigenvector obtained from solving equation (28)

g6 1
A

g6 1
B

g6 2
A

g6 2
B

g6 3
A

g6 3
B

!1)000E#00 !1)000E#00 9)030E!01 9)030E!01 3)195E!01 3)195E!01
!5)571E!02 !5)571E!02 !1)000E#00 !1)000E#00 4)983E!01 4)983E!01

4)561E!03 4)561E!03 6)285E!02 6)285E!02 1)000E#00 1)000E#00
2)577E!03 2)577E!03 8)815E!03 8)815E!03 5)400E!02 5)400E!02

!1)320E!03 !1)320E!03 !7)096E!03 !7)096E!03 !3)752E!02 !3)752E!02
1)008E!04 1)008E!04 3)023E!04 3)023E!04 2)996E!03 2)996E!03
1)690E!04 1)690E!04 1)454E!03 1)454E!03 7)531E!03 7)531E!03

!1)254E!04 !1)254E!04 !6)377E!04 !6)377E!04 !3)278E!03 !3)278E!03
1)800E!05 1)800E!05 !2)865E!04 !2)865E!04 !1)319E!03 !1)319E!03
2)606E!05 2)606E!05 4)081E!04 4)081E!04 1)715E!03 1)715E!03
4)756E!06 4)756E!06 !4)400E!05 !4)400E!05 !1)951E!04 !1)951E!04

!1)785E!05 !1)785E!05 !1)619E!04 !1)619E!04 !7)262E!04 !7)262E!04
1)777E!06 1)777E!06 8)960E!05 8)960E!05 4)345E!04 4)345E!04
1)006E!05 1)006E!05 3)349E!05 3)349E!05 2)061E!04 2)061E!04

!1)245E!05 !1)245E!05 !6)257E!05 !6)257E!05 !3)276E!04 !3)276E!04
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In equation (34), [B@] is the lower (R!1)](R!1) matrix of [B], l6 @"[k6
2
,2, kN

R
]T, and

f"[!b
21

,2 , !b
i1

,2, !b
R1

]T, where b
i1

denotes the (i, 1)th element of matrix [B] (see
equation (20) for the expressions of b

i1
). Solving for l6 @ in equation (34), non-trivial solutions

for the Lagrange multipliers are obtained. Applying equation (28), the corresponding
eigenvectors can be readily calculated. Table 4 shows the "rst three eigenvectors of the
system of Figure 3, where the elements of the eigenvectors are normalized such that the
magnitude of the largest entry becomes 1. Note the exact agreement between the results.

4. CONCLUSIONS

An alternative formalism that combines the best features of the assumed-mode method
and the Lagrange multipliers formalism is introduced to analyze the free vibration of
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a continuous structure with spring}mass attachments. Using the classical assumed-modes
method in conjunction with Lagrange's equations, the natural frequencies are obtained by
solving the roots of an N]N characteristic determinant. Algebraically manipulating this
characteristic determinant, it can be reduced to a smaller one of size R]R, the same
solution that is obtained by applying the more laborious Lagrange multipliers formalism.
Once the eigenvalues have been calculated, closed-form expressions, obtained with the
Lagrange multipliers formalism, can be used to determine the eigenvectors of the combined
system without solving the generalized eigenvalue problem associated with the combined
system.
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